AD-A120 7868 A SIMPLE NRTURRL NOTRTION FOR RPPLXCRTIVE LRNGURGES(U) 11
NAVAL POSTGRADUATE SCHOOL MONTEREY CAR B J MACLENNAN
SEP 82 NPS52-82-889

UNCLASSIFIED F/G 972 . NL

f -~

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

N

o
EEE

EEEE

FEEE

1.6

5
E
r

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

FEEREE B
ied

B
EE
EEEE
EEE

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

b i 1&; A e L; RN
3 R s
10 e k& | IIIII 1.0 w ke M
1V u | == U
=L U : A
[i n i
T m ! ll B & L
Bt * | =
18

R s s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

FEE
|§
SE

|||||§°

Mlgl.lg/

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF -STANDARDS-1963-A

.............

)
\ o NPS52-82-009
' NAVAL POSTGRADUATE SCHOOL
H 3 t . .

<y Monterey, Galifornia

=i

T

=2

P _
A SIMPLE, NATURAL NOTATION FOR APPLICATIVE LANGUAGES
Bruce J. MaclLenman
September 1982
X
Q
o 00 st
Approved for public release; distribution unlimited X
il ¢ .
— Chief of Naval Research S T
L Arlington, Virginia 22217 “
P (o700 1Re
82 *
e e R e T S P 4

yodeasay 40 ueaq 3JUBLOS J43ndwo) Jo Juaunsedag

“jyjsibl ,%%%;39%‘%5%5;%%91 _-_—’915272%§;>,;ycan;giﬁy/

:Aq pasea|dy :Aq pomMa LADY

U LIS 43INdwo)
30 10SS9404d _JuUeIS}SSY
3 L]

:Aq paaedaad sem Juao0das siyl

*paziJoyine s} Jaodas SLy3 40 34ed 40 ||® 3O UOLIONPOUdIY

*YOJ403SIY |PARN
40 J31y) 3y3 Aq papiAodd spuny y3pM |00OYDS 33eNPRAGISO4 |RARN I JO WebOug
Youuvasady uojiepunod Y3l Aq jaed up pajsoddns Sem uiIAdY pIJJLOdaa NJAOM YL

3S0A0U4d Juapudjujaadng
Apeayds °y °@ - punian3l °f °f Ledjupy Jedy

——) G0N AL A o PP
B AT ‘ .
.. R e O R
<

RIUAOS L LR) A3ud3uoy
TOOHIS JLVNAVYOLSOd TYAVN

L4
v
- al

.
.-t

W CTmm e g®y -, v e e, e, ™
g) . .

. " N DN A R R . .o . .
Iy PRI v . . f - - N
ol CNR Rl N S A W LY W P TP S . P B a P Sy PP U U 1

pr
A

...........
PRI -, . T A T AR AR

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE m““’m“' Lyt vons
. L GOVY ACCESSION] ATALOG NUMB
NPS52-82-009 AD -AR120 700
S TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD COVERED
A Simple, Natural Notation for Applicative Techincal Re
port
Languages §. PERFORMING ORG. REPORT NUMBER
T AUTHON(S) (3 ACT OK GRANT WUM

Bruce J. MacLennan

Naval Postgraduate School 61152N: RR000-01--10
Monterey, CA 93940 |N0001482WR20043.
1%, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE
Naval Postgraduate School | _September 1982
Monterey, CA 93940 15. NUMBER OF PAGES
TTORING A WANE & A I difforent from Contreliing Office) | 18. SECURITY CLASS. (of this repert)
Chief of Naval Research
Arlington, Virginia 22217 m%%wﬁm_
- SCNEOULE
e BavmauTIon STATERERT (o7 is Repers TR TOT |

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetrast sntered in Bleek 20, it difforent from Report) e

ST Laed

3 o Dvonofor

2 RPN TARY NOTET —75 AR

= oty /H L o
= (79 KEY WORDS [Continwe on reveres side IT noseosary Gnd IGontily by DIock mumber) ™
- Notation, Applicative Languages, Functional Programming, Relational

- Programming, Logic Programming, PROLOG, Relational Databases, LISP.

r- — ‘ﬁﬂf non= "s'"pec'ia“st's"'a'h 1nﬂa’rm 'Bm mathematical appearance of most
- 1icative, functional, and very-high-level languages. This report presents a
T fmple notation that has an unintimidating, natural-language appearance and that
- an be adapted to a variety of languages. The paper demonstrates its use as an
‘e Tternate syntax for LISP, PROLOG, Backus' FP, relational programming, and rela-
-~ fonal database retrievals. The gr r's eight productions can be handled by a
- imple recursive-descent parser. {:

i DD iy W73 sormow or 1 wov o8 13 omsoLgTE UNCLASSIFIED

‘. $/N 0102 L% 014- 6601

....................

TR - - 8 » N Tt LR - . - N - . - - . . . - -
[SN WRENENOC - o i e i b e
r Py A B o @ e W o N - . - - - e v .- -

A SIMPLE, NATURAL NOTATION FOR APPLICATIVE LANGUAGES®

B. J. MacLennan
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940

1. Introduction

Many non-specialists are intimidated by the mathematical appear-
ance of most applicative and very-high-level languages.
Mathematical notations have distinet manipulative advantages,
some of which I have discussed in Maclennan (1979). Unfor-
tunately the widespread use of advanced languages may be 1limited
by their excessive use of mathematical notations. This paper
presents a simple notation thaq has an unintimidating, natural-
language appearance and that can be adapted to a variety of

languages.

I must stress that I am not suggesting that this notation
constitutes natural language programming. This notation is very
far indeed from being even a subset of English, or any other
natural 1language. However, the reader will see that with a

proper choice of vocabulary the notation can be quite readable.

I must also stress that this notation is not in itself a

. programming language. It 1is more accurate to describe it as a
® Work described in this report was supported in part by the
. Office of Naval Research under contract number NOOQO14-82-WR-
20162.

VA .I ‘7 PSS
Attt T A S AN

.-’l

et v
oy PP
. DRAEAR TR AR AR
(S e B Tt

4
S .

b o3 I o i ¢

syntactic framework that can be adapted to a number of specific

contexts by a proper choice of vocabulary. The figures in this
paper demonstrate its use as an alternate syntax for LISP, 1logic
programming, functional programming, relational programming, and

relational database operations.

2. Syntax

A natural, readable notation results from combining non-symbolic
operator names with a right-associative infix syntax, and comma
and colon rules that suppress many parentheses. 0f course, some
of the manipulative advantages of a mathematical notation are

lost.

Briefly, the syntax 1is as follows: All identifiers are
divided into three classes: niladic (x, y, z, in the following
examples), monadic (f, g), and dyadic (p, q, r). Monadic appli-
cations, whether functions or predicates, are written "f x", "f g
x", etec. These associate to the right, hence "f g x" means "f(g
x)". Dyadic applications, whether functions or relations, are
written with a right-associative, infix syntax. That is, "x p vy
q 2" means "x p (y q 2)". Monadic applications are more binding
than dyadic applications; hence, "f x p g y" means "(f x) p (g
y)". Operations that accept more than two operands are expressed
by using a list building (or argument combining) operation. For
example, if the operation "y with z" produces the pair (y,z),

then the triadic operation p can be applied by "x p y with z2".

4 D DA Mt AT A ¥ M ST i N M gt ey
DI A VAR I ILE B0 T R IR T L 200, WO W A T e

et
........................

Commas and colons can be used to eliminate many parentheses.

A comma 1is equivalent to a right parenthesis. The corresponding

left parenthesis is at the nearest preceding colon, or at the
beginning of the expression, 1if there is no preceding colon.

¢ Hence, "x p vy, q z" means "(x p y) q 2" and "x p:ty q 2z, r w"
means "x p (y q 2) r w", which by right-associativity means "x p

((yq2z)r w".

Since the parsing of expressions is determined by the clas-
sification of identifiers into niladic, monadic, and dyadic, it
is not possible to directly use a monadic or dyadic identifier as
the argument to another application. To do this it is necessary
to convert the monadic or dyadic identifier into a niladic iden-
tifier by quoting 1it. For example, the inverse of the dyadic
identifier plus must be written

inverse 'plus’®
The formal grammar for this notation is in the appendix.

Figure 1 shows the natural notation adapted to LISP. The
particular vocabulary choices shown are typical. The following
two figures show a program in conventional LISP notation and in
the natural notation. The remaining figures compare other

mathematical and symbolic notations to the natural notation.

3. References

(1] MacLennan, B. J. Observations on the Differences Between

-5
. ,'.
phol
A

.
E" -

)
3‘:

~

Formulas

Language Design, SIGPLAN Notices 14, 7,

51-610

Appendix: Grammar for Natural Notation.

senten:e

clause

predicate

phrase

simple-phrase

term

infix

prefix

clause.

term [predicate]

phrase, predicate

(July

infix term (predicate]

infix: clause

simple-phrase

phrase, infix simple-phrase

term {infix simple-phrase]

nilad

"(" clause ")"
prefix term
'monad’

'‘dyad'’
constant

dyad

"{" clause "}"
prefix infix

monad

"(" clause "]"

1979),

and Sentences and their Application to Programming

PP-

Natural Notation LISP
"X F Y with Z" means B | (defun F (X Y Z) B) |
"X F Y" means B (defun F (X Y) B) |
"F X" means B (defun F (X) B)
Cif B, else D (cond (B C) (T D))
X" means Y, below B (let ((X Y)) B)
first X (car X)
rest X (cdr X)
second X (cadr X)
third X (caddr X)
X with Y (cons X Y)
Xis Y (eq X Y)
atom X (atom X)
null X . (null X)
E; nuﬁber X (numberp X)
T X append Y (append X Y)
Es X search Y (assoc X Y)

Figure 1. Comparison of Natural Notation and LISP

oS
-~ .

PPy
LN W A

e
.

i) 1
LS
“t s de

| @570

...........................

(defun eql (x y)
(or (and (atom x) (atom y) (eq x y))
(and (not (atom x)) (not (atom y))
(eql (car x) (car y))
(eql (cdr x) (edr y))))) "

Figure 2. Equal Function in LISP

"X equals Y" means:
atom X and atom Y and X is Y, or
not atom X and not atom Y and:
first X equals first Y, and

rest X equals rest Y.
Figure 3. Equal Function in Natural Notation

Isa (John, human).

Gives (John, book, Mary).

Gives (John, book, x) & Likes (John, x).
Likes (w,x) & Gives(w,y,x), Likes(w,y).

Figure 4. Logic Program in Usual Notation

-

— John isa human.

S John gives book to Mary.

o John gives book to one, if John likes one.
5

One likes another, if:

one gives gift to another, and one likes gift.

Figure 5. Logic Program in Natural Notation

......
'''''''
.....

Def IP = (/+)°(oc X)‘°trans.
Def MM = (oc oc IP)°(oc distl)‘{1, trans‘2]

Figure 6. Functional Program in Backus Notation

Inner-product means

transpose then repeat times then reduce-by plus.

Matrix-multiply means:
first combine second then transpose,
then repeat distribute-left

then repeat repeat inner-product.
Figure 7. Functional Program in Natural Notation
£8R = £~ 1.R.f
rightsib = T~ '$(Id!{(+1))
next = move.total [while(non.dom rightsib, parent); rightsib]

prev =z move.total

1

(while(non.dom rightsib ™~ ', parent); rightsibdb -1

remove(L) = L := subtree N; excise
subtree(n) =z (m | m X ints) = T
where m = subnodes n

reach =z (img T).(X ints)
excise =z T :z T <> non.subnodes N | (T"1N, N, NT N)

replace(L) = T := (T~ 'N : first L } L) / T

Figure 8. Part of Syntax Di:ec:ec Editor in Relational Notation

.......
.............

"Function map structure”" means
function then structure then inverse function.
"Right-sibling™ means A
inverse tree map identity parallel something plus 1.
"Move-next" means parent do-while non domain right-sibling,
then right-sibling, apply total then move.
"Move=-previous" means
parent do-while non domain inverse right-sibling,

then inverse right-sibling, apply total then move.

"Remove-from buffer" means:
buffer becomes subtree of current-node, then excise.
"Subtree a-node" means:
tree if-in the-subnodes combine the-subnodes cross integers,
where the-subnodes means subnodes of a-node.

"Reac .’ means: something cross integers, then image tree.

"Excise"” means tree becomes
tree restrict non subnodes of current-node
combine: current-node apply inverse tree,

connect current-=node connect non-term of current-node.

"Replace~from buffer" means tree becomes:
current-node apply inverse tree, maps-to first buffer,

combine buffer, extend tree.

Figure 9. Part of Syntax Directed Editor in Natural Notation 1]

{(F.COMPANY): F € FORESTS A F.SIZE>1000}

{(F.COMPANY,F.FOREST): F @ FORESTS N F.LOC='CALIFORNIA'}

{(F.SIZE,F.LOC): F @FORESTS A
3 TETREE (T.SPECIES='CEDAR' A T.FOREST = F.FOREST)}

{(F.SIZE,T.TREENUM): F € FORESTS N\ TE&TREE A
T.FOREST = F.FOREST N T.SPECIES = 'CEDAR'}

Figure 10. Relational Database Retrievals in Conventional

Notation

Company F whenever: F in forests, and size F > 1000.

Company F with forest F, whenever:

F in forests, and location F is "California".

Size F with location F, whenever: F in forests,
and: T in trees, exists:

species T is "cedar", and forest T is forest F.

Size F with tree-number F, whenever:
F in forests, and T in trees, and

. forest T is forest F, and species T is "cedar".

Figure 11. Relational Database Retrievals in Natural Notation

T app——

R

...........
......................

(defun eval (e a)
(cond
((and (atom e) (numberp e)) e)
(Catom e) (assoc e a))
((eq (car e) 'quote) (cadr e))
((eq (car e) 'cond) (evcon (cdr e) a))

(T (apply (car e) (evargs (cdr e) a) a))))

(defun evcon (L a)
{cond
((eval (caar L) a) (eval (cadar L) a))

(T (eveon (edr L) a))))

(defun evargs (x a) (mapcar (bu (rev 'eval) a) x))

(defun apply (f x a)

(cond

((eq f 'car) (car (car x)))

((eq £ 'edr) (ecdr (car x)))

((eq £ 'atom) (atom (car x)))

((eq f 'null) (null (ear x)))

((eq f 'cons) (cons (car x) (cadr x)))

((eq f 'eq) (eq (car x) (cadr x)))
(T (let ((L (eval f a)))
(let ((LE (mapcar 'list (cadr L) x)))
(eval (caddr L) (append LE a)))))))

Figure 12. LISP Universal Function in LISP

[P P O S U

ey " " M b -uy_‘_vj

i "Names evaluate form" means:

form if (atom form and number form), else:

names search form if atom form, else:

second form if first form is "quote", else:

names do-conditional rest form, if first form is "cond", else

names apply first form with names evaluate-list rest form.

|

h "Names do-conditional pairs" means:

b names evaluate second first pairs,

if names evaluate first first pairs,

else names do-conditional rest pairs.

"Names evaluate-=list forms" means:
nil if null forms, else:
names evaluate first forms,

with names evaluate-list rest forms.

LA AL Fa PrP——— ' g
IR EMAEMRINDE N I it Taaey
P A . oo A

Figure 13. LISP Universal Function in Natural Notation (Part 1)

Aoy oo o P
PRI A AL S

-« 11 =

"Names apply function with actuals" means:

first first actuals if function is "car", else:

rest first actuals if function is "cdr", else:

atom first actuals if function is "atom", else:

null first actuals if function is "null", else:

first actuals with second actuals, if function is "cons", else:
first actuals is second actuals, if function is "eq", else:

names apply-user function with actuals.

- v
BEK, saeel o BT INRARREETRDETA
L e AR
v . A N - . 0 .
v . A LRI 4 PP SN

"Names apply-user function with actuals" means:

-

lambda-expression means names evaluate function, below:
bound-variables means second lambda-expression, below:
bound-variables pair-with actuals, append names,

evaluate third lambda-expression.

"Names pair-with values"™ means:
nil if null names, else:
first names with first values,

with rest names pair-with rest values.

Figure 14, LISP Universal Function in Natural Notation (Part 2)

e 12 =

...

Naval Postgraduate School
Monterey, CA 93940

L Chairman, Code 52Hq 40
.- Department of Computer Science

Naval Postgraduate School

Monterey, CA 93940

Professor Bruce J. MacLennan, Code 52M1 12
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93940

.
4 INITIAL DISTRIBUTION LIST
.+
ii Defense Technical Information Center 2
T Cameron Station
o Alexandria, VA 22314
S Dudley Knox Library 2
- Code 0142
Naval Postgraduate School
g Monterey, CA 93940
- Office of Research Administration 1
H! Code 012A
-

L. A

Aa At b adbdadsd
Gt

Jim Bowery 1
Viewdata Corp. of America, Inc. '

Suite 305

1444 Biscayne Blvd

Miami, FL 33132

> Dr. R. B. Grafton 1
- Code 433 '
> Office of Naval Research

- 800 N. Quincy St.

é} Arlington, VA 22217

|

=

b

f

-

e

¥

P,

;

. 4

-

g

& -13 -

